Bioinformatics and R: Visualising Genomic Data

Laboratory of Computational and Functional Oncology Department for Cellular, Computational and Integrative Biology - CIBIO University of Trento

yari.ciani@unitn.it

Department of Cellular, Computational and Integrative Biology - CIBIO

Yari Ciani, PhD

Laboratory of Computational and Functional Oncology

The Topic

Precision Oncology and Biomarker discovery

Diagnostic, prognostic, treatment response markers for tumor stratification and precision oncology Hypothesis driven and agnostic studies

The Funding

European Research Council

The Team

What is Bioinformatics?

Bioinformatics: <u>applies principles of information sciences and technologies</u> to make the vast, diverse, and complex life sciences data understandable and useful. e.g., Text mining, Processing raw data, ΑΙ Artificial Intelligence, Software development, data Computer mining Math and but also experiment design Science Statistics and results interpretation and IT

https://www.bioinfo.ufpr.br/

Precision Oncology

Precision cancer therapy

Designed by Yari Ciani

The Precision Drug Discovery Cycle

Adapted by T Cantore from Shrager, Jeff, and Jay M. Tenenbaum. "Rapid learning for precision oncology." Nature reviews Clinical oncology 11.2 (2014): 109-118.

Molecular Profiling (e.g. sequencing)

The cost of developing a single FDA/EMA-approved drug: 1B \$ and 10 - 15 years

Molecular profile of tumor

Identification of biomarkers for personalised therapies

FDA: Food and Drug Administration EMA: European Medicines Agency

...but it is worth

Delivering precision oncology to patients with cancer, Mateo et al, Nature Medicine 2022

Precision Oncology

Precision cancer therapy

The origin of DNA sequencing

DNA Sequencing is figuring out the order of DNA nucleotides, or bases (A T G C), in a genome that make up an organism's DNA.

ddNTP are at low concentrations to permit elongation of fragments

Credits to Curtis Huttenhower, https://slideplayer.com/slide/10893306/

The NGS revolution

Downloaded from BioRender

NGS approaches in a nutshell

Illumina - Sequencing by synthesis

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.

https://www.researchgate.net/profile/Kamila-Knapik/publication/340535984/figure/fig10/ AS:878431982063629@1586445913332/The-principle-of-Illumina-sequencing-process-A-DNA-is-converted-intoan-Illumina.png

Before initiating the next chemistry cycle

The blocked 3' terminus and the fluorophore from each incorporated

How to get from NGS data to biological interpretation?

- Sequencing produces high-resolution TIFF images
- 100 tiles per lane, 8 lanes per flow cell, 100 cycles
- 4 images (A,G,C,T) per tile per cycle = 320,000 images
- Each *TIFF* image ~ 7Mb = 2,240,000 Mb of data (2.24TB)

How to get from NGS data to biological interpretation?

Up to 8B read pairs (2x150bp)

SEQUENCING READ

Approximate String Matching with Bounded Edit Distance, where the goal is to find all (locally) similar substrings of a large reference that align to a given read, allowing for a limited number of edits.

Genomic-scale alignment is typically done in C/C++ (e.g., BWA, minimap2) due to performance constraints.

R is not optimized for low-level memory access or speed.

The role of R in Bioinformatics

Proprietary software

The R Bioinformatics community

Visualising the Genome: an example

Showing frequencies of mutations of an entire cohort across the entire genome

From Overview to Detail

	i I I		-	
	4		1	-
		Ī		
-	2	-	Ξ	
			_	
=	=			

Quigley et al., 2018, Cell

From Overview to Detail

CONS:

-graphical interface

-slow

-graphical customisation -JAVA!

Screenshot from IGV, a Java based alignment visualisation tool

Quigley et al., 2018, Cell

Long Range Interactions (physical)

HiC assay

https://phanstiellab.github.io/plotgardener/

Long Range Interactions (functional)

T. Fedrizzi, Y. Ciani, F. Lorenzin et al.

Long Range Interactions (functional)

circlize implements and enhances circular visualization in R Bioinformatics, 2014

Zuguang Gu

https://jokergoo.github.io/circlize_book/book/index.html

circos.initializeWithIdeogram()
circos.genomicLink(bed1, bed2)

bed1								
chr	start	end	value1					
chr6	102324459	147617643	-0.50418830					
chr17	65167455	77619820	-0.10264963					
chr11	13366995	32331617	0.42482152					
chr8	93343457	96256710	0.65620649					
chr16	64403195	65047798	0.04966380					

Summarising Entire Cohorts

https://jokergoo.github.io/circlize_book/book/index.html

0.8 0.6 0.4 0.2

0

Summarising Entire Cohorts

- 0.8 0.6 0.4
- 0.2
- 0

Summarising Entire Cohorts

Based on the ComplexHeatmap package

Highlighting mutual exclusivity

From Overview to Detail

7.5804	9 mb		7.580555 mb	
	VAF: 1.17%			Designed by Ilaria PhD studen
				Unpublished of do not pos

Conclusions

- Bioinformatics have high requirements in terms of visualisation. Starting from huge amounts of data, we need to show broad overview of results but also precise details.

- DNA is a 1D entity of 3.3B points. At the same time it's a dynamic 3D physical object. Each DNA base is interesting on its own but also in relationship with the others.

- R provides access to visualisation packages that are pivotal for our comprehension of biology and for the dissemination of our results.

Visualisation packages used in this presentation: ggplot2, ComplexHeatmap, Circlize, patchwork, Gviz, ggrepel, seqvisr, GenomicAlignments

Francesca Demichelis Lab: Liquid Biopsies Team

Prof. Francesca Demichelis Francesco Orlando Caterina Nardella Orsetta Quaini Federico Vannuccini Alessia Marinelli Marta Paoli Ilaria Cherchi

Previous Members: Vera Mugoni **Gian Marco Franceschini**

Thomas Cantore Davide Prandi **Tarcisio Fedrizzi** Giacomo D'Amato

All the other members of the group!

Core Facilities, CIBIO Department, University of Trento Next generation Sequencing (NGS)

ACKNOWLEDGEMENTS

Funded by

NDAZIONE CASSA DI RISPARMIO DI TRENTO E ROVERETO

Many thanks to all patients and families!

